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ABSTRACT

We present a robust vertebral segmentation framework that can bootstrap the segmentation task with little to no
dataset. Our deformable model-based framework jointly optimizes the appearance and shape of the spine model
using the novel differentiable appearance modeling method. Because our framework learns the appearance of the
spine only from the given image, it does not rely on the dataset or handcrafted image features and adapts robustly
to the appearance of the image. With our proposed differentiable signed distance operator and spectral mesh
optimization, the shape of the spine model can be refined via a gradient-based optimizer. Our framework was
tested on the VerSe’20 training dataset, and it achieved an average Dice score of up to 90% for selected vertebral
labels. Our results suggest that utilizing the explicit knowledge from the template model can significantly reduce
the need for a large training dataset.

Keywords: Deformable model, differentiable appearance modeling, differentiable signed distance operator,
spectral mesh optimization, vertebral segmentation

1. INTRODUCTION

Vertebral segmentation, a task of retrieving the structure of vertebrae from computed tomography (CT) spinal
images, has received constant attention due to the crucial role of vertebrae in supporting the body and protecting
the spinal cord. Accurate automated segmentation facilitates the timely detection, prevention, and treatment of
various spine-related diseases. Early approaches to automated vertebral segmentation, as explored in previous
studies,1–4 mainly based on classical image processing methods. With the emergence of deep learning and the
release of public CT image datasets, deep learning-based vertebral segmentation methods5,6 have shown better
performance compared to the classical ones.

Although recent advances in vertebral segmentation are mainly driven by convolutional neural networks
supported by extensive datasets, deformable model-based methods7,8 and their applications to the vertebral seg-
mentation task9,10 have demonstrated distinct advantages that are not easily replicable by neural networks.
Leveraging explicit knowledge about the target subject from a deformable template model, such model-based
methods can achieve several benefits: (1) conducting segmentation with significantly smaller datasets, (2) trans-
parently elucidating the reasoning behind results, and (3) offering correspondence information between segmen-
tation outcomes. However, deformable model-based methods often rely on handcrafted energy for optimization,
resulting in potential robustness issues.

Our goal is to improve robustness while retaining the inherent advantages of the deformable model-based
method. Our main inspiration comes from the recent advancement of differentiable rendering11 as an approach
to inverse rendering problems in computer vision. Inspired by this optimization-based inverse problem solving
approach, in this paper, we present a novel vertebral segmentation framework from CT spine images using
differentiable appearance modeling. Our main contributions are threefold: (1) an appearance optimization
framework for vertebral segmentation, which aligns the deformable spine template to the given image by learning
the appearance of the spine without a training process; (2) a differentiable signed distance operator, which has
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Figure 1: Overview of our vertebral segmentation framework.

an analytic gradient formulation, sublinear time complexity, and GPU accelerated implementation; and (3) a
spectral mesh optimization, which enables gradient-based optimizers to refine the deformable mesh in a stable,
robust, and coarse-to-fine manner.

2. METHOD

Without using any training process or predefined image feature, our framework can extract spine shape and
correspondence by aligning a 3D deformable spine template to a volumetric CT image. To achieve this, our
framework exploits the following properties of spine imagery: (1) the repetitive structure of vertebrae and (2)
the high contrast of the bone-tissue boundary. Given a coarsely aligned spine template, our framework refines
the alignment by jointly optimizing the appearance (i.e., voxel intensity) and the shape of the spine model using
gradient descent, minimizing the difference between the predicted image of the spine model and the given target
image. Figure 1 illustrates our framework.

2.1 Appearance modeling

We assume that the voxel intensity is predominantly determined by the signed distance from the bone-tissue
boundary. With this assumption, our framework models the appearance of the spine model with a rendering
function fθ : R → R from the signed distance to a voxel intensity. Defined by a multilayer perceptron, the
rendering function fθ can be optimized using gradient descent. Additionally, Fourier feature encoding12 is used
to let the neural function learn sharp boundaries efficiently.

2.2 Differentiable signed distance operator

We propose a differentiable signed distance operator, which enables optimizing the shape of the deformable spine
model by backpropagating the image loss. Computing a signed distance d at a point p from a closed mesh M
is performed in two parts: computing an unsigned distance and determining the sign by checking whether p is
insideM or not. The unsigned distance fromM to p can be easily calculated by finding the minimum among
the distances from p to each triangle consisting ofM. To determine the sign, the winding numbers13 are used
for robustness. Using octrees and the Barnes-Hut approximation,14 the computation of both unsigned distances
and winding numbers can be done in sub-linear time and easily accelerated by GPUs.

Given the definition of the signed distance d, the gradient (∂d/∂p, ∂d/∂vi) can be derived. A simple geometric
proof gives ∂d/∂p = sign(d)normalize(p − p∗), and ∂d/∂vi = −wi∂d/∂p, where p∗ is the closest point from p
onM, vi is a vertex of the face containing p∗ and wi is a barycentric coordinate of p∗ with respect to vi.



2.3 Spectral mesh optimization

For a stable and accurate optimization of the vertebral mesh consisting of K vertices, we propose spectral
mesh optimization, where instead of the vertex positions V ∈ RK×3, the spectral coefficients U ∈ RK×3 of the
Laplace-Beltrami eigenbases are used to parameterize the shape. For background on the use of Laplace-Beltrami
eigenbases, refer to the course by Lévy and Zhang.15 In essence, the eigenbases Φ of the Laplace-Beltrami operator
∆ on a given mesh form a set of orthonormal bases for a set of functions on the mesh, and the eigenvalues Λ
encode the frequency of the corresponding eigenbasis, similar to Fourier bases for a flat surface. Thus, the vertex
positions V , which is a function on the mesh surface, can be written as a linear combination of eigenbases.
Those coefficients U = ΦTV reparameterize the shape into low- to high-frequency signal magnitudes, providing
coarse-to-fine control over the shape.

In addition to the well-established spectral mesh deformation technique, we introduce the following adap-
tations for a gradient-based optimization framework. During optimization, our method utilizes eigenvalues to
control the coarse-to-fine manner of the optimizer. Given the eigenvalues Λ, our method uses adaptive step sizes
for each frequency band as follows:

U ← U − lr× (
Λ

λ0
)−α × ∂L

∂U
, (1)

where λ0 is the smallest nontrivial eigenvalue and α controls how much details are suppressed. In our experiments,
the optimization starts with α = 1 and linearly decreases to α = 0.4 at the end of the optimization. Our method
also exploits the repetitiveness of the spine model by approximating individual eigenbases with a single set of
eigenbases from the average shape of vertebrae.

2.4 Losses

The image similarity loss is defined as the mean L1 distance between the predicted appearance of sampled points
and the voxel intensity from the target image at the same sampled points, or

LI =
1

N

N∑
i

||fθ(dM(pi))− I(pi)||1, (2)

where N denotes the number of sampled points, and I(pi) is trilinearly interpolated voxel intensity at point pi
from the target image I. In our experiments, N = 10,000 is used.

In addition to image similarity loss, the following four regularizers are used to stabilize the optimization

process and the result. The edge length regularizer LE = 1
|E|

∑|E|
i ||ei||22 smooths the mesh and evenly distributes

the vertices. The normal regularizer LN = 1
M

∑M
i exp(−|n(qi) · ∇I(qi)|), calculated with additional M points qi

sampled on the mesh surface, aligns the mesh surface with the local maxima of the image gradient. The overlap
regularizer LO =

∑N
i

∑
Ma,Mb

ReLU(−dMa
(pi))×ReLU(−dMb

(pi)) penalizes overlaps between any pair of
meshes Ma,Mb (i.e., sampling points with negative signed distances from multiple meshes). The variance
regularizer LV =

∑
m ||Λ0.5(Um − Um+1)||22 assimilates the shapes of the neighboring vertebra.

Our final optimization loss is defined as L = LI +λELE +λNLN +λOLO +λV LV , where λ{E,N,O,V } are the
regularization weights for the corresponding regularizer. In our experiments, λE = 0.02, λN = 0.1, λO = 1, λV =
0.02,M = 10,000 is used.

2.5 Optimization process

Point sampling On every iteration, points are sampled near the boundary of the spine model as follows. First,
the N points are uniformly sampled on the model surface. Then, the normal distribution noise ϵ ∼ N(0, σ2) is
added to the sampled points. In our experiments, N = 10,000, σ = 9.6mm is used.
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Figure 2: (a) Box plot of Dice score by vertebral label in VerSe’20 training dataset. Semi-transparent dots denote
instances, and red diamonds denote the average scores of each vertebral label. (b) Selected segmentation results
and their correspondence error (mm) from cervical, thoracic, and lumbar segments, from top to bottom. (c) Box
plot of the Dice score by vertebral segments, performed by our framework and ablated variants. -I denotes our
framework without image loss, -N for without normal loss, and -E for without edge length loss. For each variant,
changes in the average Dice score are marked below the label, red and green for a decrease and an increase in
performance, respectively.

Optimizer For the rendering function fθ, the Adam optimizer16 with (lr, β1, β2) = (0.01, 0.9, 0.9) is used. For
affine and spectral deformations, a vector-wise normalization variant17,18 of the Adam optimizer with the same
hyperparameters is instead used to reduce the artifacts aligned to the grid.17–19 For any positional values, e.g.
the voxel size or the vertex position, we used 64mm as a unit of length to match the scale of values similar
to the weights of the neural network and the affine transformation matrices. No weight decay is used for both
optimizers. In our experiments, a fixed number of optimizer iterations of 3,000 is used.

Coarse-to-fine optimization In addition to spectral mesh optimization, we encourage the optimization pro-
cess to align shapes in a coarse-to-fine manner by blurring the target image in the early stages and slowly
decreasing the blur radius as the iteration progresses. In our experiments, the initial blur radius σ0 is set to
2.56mm, and the blur radius is linearly decreased until optimization is 80% done, which is when the blur radius
becomes 0 and the original target image is used instead.

3. EXPERIMENTS AND RESULTS

3.1 Experiments Setup

We used VerSe’2020 training dataset, which is preprocessed to have an isometric voxel size of 1mm3. For
initial spine alignment, we used centroids in the dataset. We designed the spine template model by stacking a
single vertebral mesh shown at top left of Figure 1, which is constructed from the average shape of xVertSeg21

training dataset. We deliberately chose the lumbar vertebra as the shared vertebral template model, to show
the performance differences by shape similarities between the lumbar-based template models and the cervical,
thoracic, and lumbar vertebrae in the image.
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Figure 3: (a) A sample of CT spine image (sagittal slice with GT segmentation masks overlayed) from VerSe’20
dataset. (b) Segmentation output from our framework. (c) Optimized vertebral mesh. (d) Optimized rendering
function fθ.

Table 1: Average Dice score by vertebral segments, performed by our framework and ablated variants.

Ours -I -N -E

Cervical 63.3186 30.8736 58.2077 63.4729
Thoracic 75.8013 44.7484 67.8749 75.6270
Lumbar 86.3177 56.7357 79.8192 85.8110

Total 77.3202 46.5200 70.2868 77.0879

3.2 Results

Vertebral segmentation We measured the Dice score of the aligned spine model and the ground truth labels.
The result is shown in Figure 2a and Figure 2b. Our framework took on average one hour per image. The lumbar
vertebrae, especially from L1 to L4, show up to 90% Dice score, higher than the other two segments, as they have
a shape similar to the template model. Within a vertebra, our framework identified the correspondence more
accurately for vertebral bodies than vertebral arches due to the more complex structures in vertebral arches. We
expect that the result would be more accurate if the spine model were constructed from multiple label-specific
meshes.

Figure 3 depicts the output mesh and the optimized rendering function for a selected CT spine image from the
VerSe’20 dataset. Note that our framework can correctly learn the sharp appearance of bone-tissue boundary
on the zero-isosurface due to Fourier feature encoding and the normal regularizer. Although it shows great
results on the lumbar segments, our framework produces a noticeable error near the first or last vertebra (the
L5 vertebra shown in green in Figure 3b) or the cervical segments which have highly divergent shapes from the
template.

Ablation study We ran the same segmentation task with variants of our framework to see the effects of each
loss term. The result, described in Figure 2c and Table 1, shows that the image similarity loss (Equation (2)) is
critical for shape alignment, as it can provide volumetric visibility of the target image compared to the normal
regularizer, which only provides rather sparse surface visibility. The normal regularizer also has a considerable
impact on performance because it resolves the ambiguous zero-isosurface of the signed distance for the rendering
function fθ. The edge length regularizer, compared to the previous two regularizers, shows little impact on the



Dice score, which measures the similarity of two volumetric regions. However, it affects the overall quality of the
shape and the surface correspondence between the aligned shape and the ground truth.

4. CONCLUSION

In this paper, we introduced a differentiable appearance modeling of a deformable spine template, a dataset-
free framework to vertebral segmentation. Exploiting the repetitive structure and high-contrast boundary of
the spine, our framework can align a spine template model onto a given CT image by jointly optimizing the
appearance and shape of the model. Our experimental results show that explicit knowledge from a well-tailored
template model can significantly reduce the need for a large training dataset in segmentation tasks. We believe
that our framework can bootstrap the segmentation task with little to no dataset.

In future work, we will explore various differentiable operators to allow the rendering function to utilize richer
information beyond the signed distance. Additionally, because our framework can generate the appearance of
a given model, we expect that it can also perform image synthesis when combined with a more sophisticated
rendering function.
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Štern, D., et al., “Verse: a vertebrae labelling and segmentation benchmark for multi-detector ct images,”
Medical image analysis 73, 102166 (2021).
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